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In his paper [l ] the author formulated the problem of flow past of pro- 
file with the occurrence of local supersonic zones terminated by straight 
compression shocks; in his paper [2 1 he formulated the similar problem 
for the case of curved compression shocks. 

For this it was necessary to give the hodograph of a part of the pro- 
file and also the hodograph of the compression shock itself. The profile 
is determined by the latter condition, so that this problem is not direct, 
but inverse. 

In the present paper we show how we can construct, to the first 
approximation, the flow past an arbitrary given smooth profile with a 
given velocity at infinity, assuming that we have already solved the 
problem of paper [ 1 ] for a case giving a profile close to that specified 
in the data of our problem. l The first problem will be denoted for brevity 
by I, and the second by II. 

It is sufficient to consider the upper half of the flow - above the 
zero streamline. which consists of two infinite half-lines, lying on the 
x-axis, and the upper portion of the profile. The upper portion of the 
profile obtainedfrom the solution of Problem Z will be denoted by Lo, and 
the corresponding portion of the given profile by L (Fig. 1). 

The distance of the points of the profile L from the corresponding 
points of the profile Lo along the outward normal to the latter, will be 

l For certain conditions the problem of paper [l 1 has been solved by 
Devingtal’ E 3 1. 
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denoted by ??n(u), 

LO. It is assumed 
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where D is any parameter which varies along the profile 
that SE(U) is a sufficiently small quantity. 

Pig. 1. 

The stream function t$‘, corresponding to flow past the profile Lo, 

satisfies in the hodograph plane the equation which to the first approxi- 

mation coincides with Tricomi’s equation: 

V&J + +;n = 0 (1) 

Here 6 is the angle of inclination of the velocity, r) is a known func- 

tion of the modulus of the velocity, employed in the tneory of transonic 

flow. 

Let us recall the formulation of Problem I in the hodograph plane 

(Figs. 2.3). 

Fig. 2. 

The boundary conditions are the following: 

+” -= 0 on HCABD, 

,J,” = kp-‘/’ sin $ t -/- 0 (Z) 

in a neighborhood of the point A, where 

Fig. 3. 

(2) 

(3) 

( p sin 1 = 0, p cos t = $ [q”* - q2]) (4) 

#” (0,. 3) = 0” (@,, - ?). 4; (@,, ‘I) = 0 (5) 

on the vertical segment FGH (here FG corresponds to the front side and 

GH to the rear side of the straight compression shock) 

v(e, 0) = f (e) on ED (6) 
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Here EF is a characteristic. On this curve no boundary conditions at 

all are given. The curve DF, on which \‘I0 = 0, is determined later after 

the solution of the boundary problem. 

If it is assumed that the points 9, C are points where the profile 

forks, so that the values of the velocity there are different from zero, 

whilst the values of ‘7 are finite, then the curve HCABD is finite. 

In this case the problem has been solved by Devingtal’ [3 1. His so- 

lution was obtained under the conditions A = B = C (Fig. 4). 
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Fig. 4. 

After the solution of Problem I. by means of the well known formulas 

of Chap1 ygin, we find the shape of the profiIe BDFHC in the physical plane, 

and also the straight compression shock FM. 

For the solution of Problem II it is convenient to make use of the 

perturbation in the modified stream function [4 I 
~o=o-~” (7) 

where 

00 .T $“- P (uy"- VXO), o= +- P(uy-vx) 

Here X, V, x0, v’, 
PO PO 

are the values of the Cartesian coordinates in the 

physical plane corresponding to 8, 9 Problems I and 11, respectively. 

The functions w 4 o and therefore also 6w satisfy the equation 

to the first approximation in the hodograph plane. 

For 

of the 

small values of an(a) the value of &I is known on the curve HCABDF 

6, I) plane to an accuracy permitting only errors of the second _ _ 
order of smallness; we have 14 I 

60=-LwwSn 
PO 

(9) 

Furthermore, on the curve BAC, 6n = 0. 60 = 0. 

At the point A we also have 60= 0. To establish the conditions on FGH 



1110 F. I. Frank 1’ 

we recall 
no longer 
a certain 

t21 

that the compression shock in Problem II is, generally speaking, 
a straight line. Corresponding to it in the 8, T] plane there is 
curve F’G‘if’; close to FGH. On this curve we have the conditions 

where the indices 1, 2 correspond to the front and rear sides of the 
shock. Moreover, the quantities ol, 82, vi, ‘12 are connected by the equa- 
tion 

We are considering the quantities 6, - 6C, 0, - 8, to be small, and 

therefore, the quantity d - off - r12 is of the same order of smallness, 
whilst the quantity (- rll - ~2) is of the second order of smallness. To 
the first approximation, condition (10) can be rewritten in the form 

V (Q. ?) + s+ rf&, rl) + Jle” (8,. sf 5% = F (9@ - ti + St) (9@ - q> + $0” (9& - ‘i) 5% 

where St?, = 8, - 8, 88, = 8, - 8, (here we have used the fact that 

(- ?1 - 72) is a small quantity of the second order). 

But by virtue of condition (5) it follows from this that 

stli (9,, q) = 84 (eG, - q) (13) 

where 6th and 80 are connected by the relation 

08 6lri 

or, to the given approximation, 
sqdw-~2 

Accordingly, the function &&?C, ?I ) also has to be sn even function 

of ?j: 

6~ (Q, r) = 60 (O,, -r) on FGH (15) 

The boundary conditions (9) and (15) determine the function 6~. In 
order that the postulated boundary condition be permissible it is necessary 
that along the arc DF 

3 -‘/a - (-- ?p < ygj- c (-- 9) 

The theorem of uniqueness and existence for our flow pattern has been 
proved only for the equation of Lavrent’ev and Bitsadze under certain 
supplementary conditions imposed on the shape of the curve HCABcllF (see 
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below) 

The curved compression shock of our flow pattern is determined by the 

basic equations (11) which, after the functions 4 and I) have been found, 

become differential equations for 6 as a function of ‘1 in the lower and 

upper half-planes. In fact, we have 

But 

where, neglecting errors of the second order of smallness, q2 = 

In formula 

Accordingly 

(17) we have 

0% @l) = g (rl)* 01 (ri) = g (-T) (?>Ol 

, .we have, neglecting errors of the second order 

(1’3) 

(17) 

11 = 1. 

(Ifa 

where 0 < 7 < 71~ Moreover, the following relations must hold 

e1 (0) = g3 (0). e(~y = e(fry (20) 

The proof of the existence and uniqueness of solution of Problem II 

will now be given for the equation of Lavrent’ev and Bitsadze 

U,.slgn Y + U, = 0 W) 

in the region AOBCEA, where AOB is a segment of the y-axis and OA = OB, 

the line BC is a straight line with slope n/4, and the arc CEA is sym- 

metrical (Fig. 5) with respect to the bisector v = X. It can be assumed 

that xc = 1. 
t Y 

(32) 

(23) 

npae- 

(24) 

Fig. 5. 
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In the triangle OBC the solution has the form: 

Here 
IJ = f (x - Y) + g (r + Y) 

g(2r-l)==U(z,r-1), f(i)=0 

The function g is therefore known on the basis of the boundary con- 

ditions. Accordingly, on the sector OC we have 

Ur + u, c= Q’(r) 

As a result of the assumption concerning continuity of the first de- 

rivatives in crossing the segment OC, this equation holds good also for 

the approximation to the segment OC from above. Let us now map the region 

OC.4 conformally on the upper half of the (f, ~7 plane in such a way that 
points which are symmetrical relative to the bisector y = x transform to 

points which are symmetrical relative to the q-axis and the origin of 

coordinates. 

The boundary condition (24) takes the form: 

Let us introduce the complex- variable @ = IIt + iU 

r (4). Then in the upper half-plane we have f 51 
Tt: Let Ut<r, 771 = 

If it is assumed that the boundary values of U on 

bounded first derivative, then at infinity we have 

@ (00) = (U, + iU,)$ = 0 

Consequently, C = 0 and, finally. 

Let 

(25) 

the curve CA have a 

When 5 lies outside the interval - 1 < &< 1 the function r (5) is 

known as far as the boundary conditions. and consequently the function 
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lb, t& is known. We notice that when - 1 < 6 < 1, 
Wien - l<c<lwe have r C<) = - P (- t), & that 

When t lies outside 

Accordingly, for 
ing Riemann-Rilbert 

c,, tc;* + 0) = UBrr (-- 4, + 0) 

profi 1 e 1113 

we have ti,[(f, 0) = 0. 
according to (30) 

the interval - 1 < 5 < 1 we have fJ2t = 0. 

the determination of the function we obtain the follow- 
problem: 

1) UsE = 0 when 5 < - 1 and 1<5 

2) U,g + U,,= 2g’Is WJ $ -U, 65 0) when0 < 5 K 2 
! I 

(31) 

3) u,,-us~ =5’Ir(-_5)J/~le__e-~ln(-5, 0) when --1<5<6 

The solution of this problem is determined in a unique manner as a 
reSUlt of the supplementary condition aZ((bo) = 0; this solution has the 
fornl: 

where 

c (E;f = 2g’ (5 (511 
I 1 
.@ 
d5 C-E 

- fJ,, E‘,Ol (?<5<*f 

c (5) = - 2g’ Ir (- S)J s 
1 I 

~= E -I- u,, (- Et 0) (--1<ti,<O) 
_j - 

(33) 

BY rcr- &/<21 Uir we denote that branch of this multi-valued function 
which assumes a real positive value as 4 -, 4 + i0, 0 < ( < 1, In the same 
way the existence and uniqueness of the solution is demonstrated in the 
case under considerat ion. 
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